

A2XP: Towards Private Domain Generalization

Geunhyeok Yu

Hyoseok Hwang

KYUNG HEE

UNIVERSITY

Introduction

Domain Generalization

Private vs Non-Private

Domain Generalization

Private vs Non-Private

Domain Generalization

Private vs Non-Private

展

Building Blocks

Ensemble-based Domain Generalization [1]

Attention Mechanism [3]

[1] Jain *et al.* "DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks" CVPR 2023.
[2] Bahng *et al.* "Exploring Visual Prompts for Adapting Large-Scale Models" arXiv:2203.17274.

[3] Hu et al. "Squeeze-and-Excitation Networks" CVPR 2018.

長

Limitation of Previous Ensemble-based Domain Generalization

Diversify-Aggregate-Repeat

Demands too much computation.

Network parameters must be updated.

[1] Jain et al. "DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks" CVPR 2023.

Visual Prompt Tuning

Fixed Network

Fine-tuning Available

[2] Bahng et al. "Exploring Visual Prompts for Adapting Large-Scale Models" arXiv:2203.17274.

展

Attention Mechanism

Mathematic Representation of Learned Selection

Methodology

Our Approach Problem Definition

展

Our Approach

A2XP: Attend to eXpert Prompts

Experts $(\mathbf{p}_{i \in [1,N]})$ **Source Domains** $(\mathcal{D}_{i \in [1,N]})$ **Target Domain** (\mathcal{D}_{N+1}) Art painting Sketch Cartoon Picture **Objective Network** (\mathcal{N})

Phase2 Generalization

Phase1 Adaptation

Our Approach

A2XP 1st Phase: Expert Adaptation

Our Approach

A2XP 2nd Phase: Attention-based Generalization

Evaluation & Analysis

Quantitative Evaluation

F

Leave-one-domain-out Evaluation

Method	DART [19]	PACS [23]					VLCS [42]				
	Supported	Picture	Art	Cartoon	Sketch	Avg.	VOC 2007	LabelMe	Caltech101	SUN09	Avg.
SAM [13]	1	18.41	15.13	21.38	19.12	18.51	44.72	46.02	61.13	41.62	48.38
ERM [44]	1	97.08	87.19	86.25	82.38	88.22	75.60	64.47	97.08	77.49	78.66
SagNet [33]	1	91.99	84.56	69.19	20.07	66.45	51.02	62.63	61.13	61.16	58.98
DANN [14]	1	97.68	89.93	86.41	81.11	88.78	77.86	66.97	98.59	73.53	79.24
MIRO [2]	1	96.48	90.79	90.46	83.59	90.33	78.05	66.68	97.53	71.97	78.56
A2XP (ours)	×	99.07	95.27	98.07	87.85	95.07	84.07	68.72	99.62	80.19	83.15

Qualitative Evaluation

Visualization of Activation

Activation: Visualization of gain and loss of Grad-CAM.

Qualitative Evaluation

長

Visualization of Manifold

Manifold: t-SNE result of the manifold space after each phase.

Complexity Analysis

 $\mathbf{O}_{\text{DART}}(M) = M \times \text{number of parameters per network}$

 $\mathbf{O}_{A2XP}(N) = N \times \text{number of perameters per prompt}$

[1] Jain et al. "DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks" CVPR 2023.

Thank You

Website: airlabkhu.github.io/A2XP

E-mail: geunhyeok@khu.ac.kr

